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Abstract: In this paper we have studied par-

allel concatenated tree codes and serial concatena-

tion of repeat and tree codes for small to medium

frame sizes. We have first analyzed the input redun-

dancy weight enumerator function of these two con-

catenated codes using the probabilistic uniform in-

terleaver. We have shown that they are similar to

some extent. Considering both regular and irregular

schemes, we have evaluated the performance degra-

dation due to the iterative decoding. Finally we have

proposed an interleaver construction in order to im-

prove the performance of the codes.
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1. Introduction

Since the introduction of the parallel concate-
nated convolutional codes or turbo codes by Berrou
et als [1], many related concatenated codes have been
proposed or rediscovered such as regular and irreg-
ular LDPC [2], and repeat accumulate (RA) codes
[3] [4]. In [5], Li Ping and als have proposed the
so-called parallel concatenated tree codes (PCTC)
composed of J 2 states recursive systematic convolu-
tional coders and J−1 interleavers. In this paper, we
will study the systematic serial concatenation of re-
peat and tree codes (SRTC) and will compare them
to PCTC. We will show that this structure, simpler
than the turbo codes, can achieve a good compromise
between performance and complexity. We will first
compare the Tanner graph of PCTC and CTC codes.
Then, we will study their average performance using
the probabilistic uniform interleaver. Both regular
and irregular repeat codes will be considered. Fi-
nally, we will consider the construction of the inter-
leaver.

2. Tanner graph of PCTC and SRTC

codes

In the rest of this paper, a rate r+s
r+s+1

2 states re-
cursive systematic convolutional coder will be called
(T, r, s) coder . r and s are respectively the number
of bits included and excluded in the recursion. As
shown on figure 1, the Tanner graph of these codes

is a tree and can be decoded easily using the belief
propagation algorithm.
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Figure 1: Tanner graph of a (T, r, s) coder.

The so-called accumulated codes are a special case
of tree codes with s = 0.

Using Tanner graph we can easily describe the
codes PCTC and SRTC. We show in figure 2 and
3 respectively the Tanner graph of the PCTC and
SRTC codes with rate 1/2.�� ��� �

Figure 2: Tanner graph of PCTC codes with J = 2
(T, 2, 1) codes
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Figure 3: Tanner graph of SRTC codes with J = 2
(T, 2, 1) codes

From these Tanner graphs we can see that there is
only one constituent code and one interleaver for the



SRTC. On the other hand, for the PCTC the con-
stituent code and the interleaver are divided into J
parts (the first interleaver usually performs no inter-
leaving). The first one is a serial concatenated code
whereas the second is a parallel concatenated code.
Since the accumulated codes are (T, r, 0) tree codes,
it is obvious that systematic RA codes belong to the
family of SRTC.

3. Performance analysis of PCTC and

SRTC codes

If we consider a (N,K) linear block code C with
minimum distance dfree, the union bound on the
bit error probability (BER) for maximum likelihood
decoding of the code over additive white Gaussian
channel is in the form :

Pb ≤

N
∑

d=dfree

AdH
d |H=e−RcEb/N0

(1)

with

Ad =
∑

d=w+z

w

K
BC

w,z =
∑

d

w

K
AC

w,d (2)

where BC
w,z called the input redundancy weight

coefficient (IRWC) is the number of codewords in
C with input weight w and redundancy weight z
and AC

w,d called the input output weight coefficient
(IOWC) is the number of codewords in C with in-
put weight w and output weight d. Since the union
bound is inaccurate in the region below the cutoff
rate, we will use the tangential sphere (TS) bound
proposed by Poltyrev [6] to evaluate the performances
of the concatenated codes.

In [7] a probabilistic interleaver called uniform
interleaver has been introduced. This interleaver is
defined as a probabilistic device that maps an in-
put sequence of weight w into all distinct permuta-
tions

(

Ni

w

)

of it with the same probability p = 1/
(

Ni

w

)

considering all the possible interleavers. Considering
that all the interleavers are uniform, we can calcu-
late the average input redundancy weight enumera-
tor function (IRWEF) of the code from the IRWEF
of the different constituent codes. For the multiple
PCCC and the CTC composed of J identical con-
stituent codes and J − 1 interleavers, the IRWEF is
given as follows:

BCP (w,Z) = BC(w,Z)

[

BC(w,Z)
(

K
w

)

]J−1

(3)

where BC(w,Z) =
∑

z Bw,zZ
z

The input output weight enumerator function (IOWEF)
of a repeat accumulated code is obtained using the
relation:

ARA(w,D) =

JK
∑

l=0

ACO
w,l A

CI(l,D)
(

JK
l

) (4)

with AC(w,D) =
∑

d Aw,dD
d. ACO and ACI are

respectively related to the repeat J time code and of
the accumulate code.

Finally, for the SRTC codes the IRWEF is given
as follows:

BSR(w,Z) =

JK
∑

l=0

ACO
w,l B

CI(l, Z)
(

JK
l

) (5)

In figure 4, we show the average BER of different
PCTC and SRTC codes with rate 1/2, J = 3 and
4 and frame length K = 440 bits. When the con-
stituent codes are (T, 4, 0), we can observe that the
waterfall region is almost the same for both schemes.
On the other hand, the error floor is better for the
PCTC code. This difference stems from the fact
that for PCTC, the weight w = 1 input information
words have no impact on the average BER whereas
for SRTC, depending on the interleaving they could
generate very low weight codewords. When these as-
sociations are avoided, the average BER of PCTC
and SRTC are close.
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Figure 4: comparison of PCTC and SRTC TS bound
BER = f(Eb/N0)

We will restrict ourselves to (T, r, 0) or (T, r, 1)
constituent coders since they give the best perfor-
mance.

For both regular PCTC and SRTC, when using
(T, r, 1) tree codes, the interleavers should be built
in order to impose the same protection to all the
information bits. This restriction avoids low weight
codewords such as d = 1 + J codewords.



If Π = [π0, π1, . . . , πJK−1] is the interleaving func-
tion and ui = vπi

, the constraint for the SRTC in-
terleaver is :

πi mod (J) = i mod (J) (6)

A similar constraint can be derived for the PCTC.
Except for a shift due to the small length of the

frame, the Eb/N0 corresponding to the waterfall re-
gions are in accordance with the calculated asymp-
totical thresholds of these concatenated codes. The
thresholds obtained using the gaussian approxima-
tion are 1.22 dB, 1.19 dB and 0.96 dB for the PCTC
and SRTC with respectively (T, 3, 0), (T, 4, 0) and
(T, 4, 1) constituent codes [8].

4. Iterative decoding of regular and

irregular SRTC

In this section we evaluate the performance degra-
dation of the iterative decoding of regular and irreg-
ular SRTC compared to the ML decoding predicted
by the TS bounds. For the design of the irregular
SRTC with good degree sequences we have used the
optimization method given in [4]. This method is
based on the gaussian approximation and allows the
construction of codes almost achieving the AWGN
channel capacity.

In figure 5 we present simulated BER performances
of two regular SRTC and irregular SRTC. The rate
of these SRTC is fixed at 1/2 and the frame length
is K = 440 . The regular SRTC are composed
of a J time repeat code and a (T, J, 0) tree code
with respectively J = 4 and 8. The first irregular
SRTC is composed of an irregular repeat code with
an average repetition factor equal to 4 and a (T, 4, 0)
tree code. The degree sequence of the irregular re-
peat code is λ(x) =

∑

i λix
i−1 with λ2 = 0.13051,

λ3 = 0.2369 and λ6 = 0.63258. λi is the fraction of
edges between the information nodes and the check
nodes that are adjacent to an information node of
degree i. The second irregular SRTC is composed
of an irregular repeat code with an average repeti-
tion factor equal to 8 and a (T, 8, 0) tree code. We
have λ3 = 0.2527, λ11 = 0.0814, λ12 = 0.3271,
λ46 = 0.1845 and λ48 = 0.1540 [4]. The threshold
for these 2 irregular SRTC is respectively 0.718 dB
and 0.344 dB. All the simulations are performed us-
ing an iterative MAP decoder and 20 iterations. The
interleavers have been chosen randomly.

We can see the difference between the asymptoti-
cal threshold and the Eb/N0 of the TS bound water-
fall region. While for regular SRTC, the difference is
limited (0.9 dB at BER=10−3 for the (T,4,0) code),
for the irregular SRTC the degradation is much more
significant (1.6 dB at BER=10−3 for the (T,8,0) code).
Consequently, the Eb/N0 associated to the water-
fall region of the irregular SRTC can be higher than
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Figure 5: Performance BER = f(Eb/N0) of regular
and irregular SRTC

the regular one. Furthermore, we can observe an-
other degradation due to the iterative decoding. For
the regular construction, this degradation is about
0.1 dB at BER=10−4 whereas the degradation is
about 0.6dB for the irregular scheme. Whereas ir-
regular SRTC can almost reach the channel capacity
for large frame length, for small to medium frame
lengths we get no improvement compared to the reg-
ular schemes. The main reason for this fact is the
presence of many small cycles in the Tanner graph
and as a consequence the message passing all along
the iterations is not efficient.

5. Interleaver construction

When the frame sizes are small to medium, it is
important to optimize the interleavers in order to
improve both the weight distribution of the concate-
nated codes and the message passing since the de-
coding of these codes is performed iteratively. In
this section, we will only consider the regular SRTC
case.

For the (T, r, 0) coder, the redundancy weight z
associated to a weight 2 input sequence u(D) with
u(D) = Da + Db is :

z ≤

⌊

|a − b|

r

⌋

+ 1 (7)

For the (T, r, 1) coder, we have also the same rela-
tion when both positions a and b are included in the
recursion.

We can now give an upper bound on the minimum
distance of a regular SRTC composed of (T, r, 0) or
(T, r, 1) using the weight 2 input sequences. We de-
fine the dispersion factor L of an regular SRTC in-



terleaver as follows :

L = min
i,j

(

J
∑

n=1

(p(2n) − p(2n − 1))

)

(8)

where p(2J) > p(2J − 1) · · · > p(1) are the 2J re-
ordered interleaved positions associated to the 2J in-
put positions Ji, Ji+1, . . . , Ji+J, Jj, Jj+1, . . . , Jj+
J . Then we have :

dmin ≤ d2min ≤ 2 +

⌊

L

r

⌋

(9)

As a consequence, maximizing d2min is equivalent
to maximizing L. Depending on J , it could be also
necessary to consider the weight w = 3, 4... input
sequenced but the problem becomes more difficult
due to the multiplicity of these sequences.

In [10], we have introduced the so-called cycle op-
timized interleaver (COI) construction for the Turbo-
codes based on the elimination of the short cycles.
This construction is equivalent to the S-random in-
terleaver construction [9] except that the forbidden
windows are triangular instead of rectangular. In
this paper, we have applied the COI construction for
the optimization of the interleaver of the SRTC.

In figure 6 we show simulation results of SRTC
composed of a J = 4 time repeat code and a (T, 3, 1)
tree code. The frame length is K = 456 and K =
1024. We present both the BER performances us-
ing a random and a COI interleaver. The error floor
of the SRTC with the COI interleaver is almost two
decades lower than the SRTC with the random inter-
leaver. The dispersion factor of the COI interleaver
of size 4096 is 54. Nevertheless the error floor is
still present at BER=10−7 and further optimization
needs to be performed.
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Figure 6: BER = f(Eb/N0) for SRTC with K = 456
and K = 1024

6. Conclusion

In this paper we have studied PCTC and SRTC.
We have shown that these two families are very close.
For small to medium frame lengths, we have also ob-
served that the iterative decoding of irregular SRTC
is less efficient than for the regular SRTC. Conse-
quently, the performance of irregular SRTC are lower
than the regular one. Finally we have proposed an
interleaver construction in order to reduce the er-
ror floor of these codes. Even if the performance of
the Turbo-codes still slightly outperforms the SRTC
codes, the SRTC codes can achieve a very good com-
promise between performance and complexity.

REFERENCES

[1] C. Berrou, A. Glavieux, P. Thitimajshima.
“Near Shannon limit error correcting coding and

decoding : Turbo-codes”. Proc. of the 1993 Int.
Conf. on Comm., Geneva, Switzeland, pp. 1064–
1070, Mai. 1993.

[2] R. G. Gallager. “Low density parity-check

codes”. MIT Press, Cambridge,Mass., 1963.
[3] D. Divsalar, H. Jin, R. J. McEliece. “Coding the-

orems for turbo-like codes”. Proc. 36th Allerton
Conf. on Communication, Control and Comput-
ing , Allerton, Illinois, pp. 201-210, Sep. 1998.

[4] H. Jin, A. Khandekar, R. J. McEliece. “Irregular

repeat accumulate codes”. Proc. of Int. Symp. on
Turbo Codes and Related Topics, Brest, France,
pp. 1–8, Sept. 2000.

[5] L. Ping, X. Huang, N. Phamdo. “Concatenated

Tree Codes:”. Proc. of Int. Symp. on Turbo
Codes and Related Topics, Brest, France, pp.
161–164, Sept. 2000.

[6] G. Poltyrev. “Bounds on the decoding error

probability of binary linear codes via their spec-

tra”. IEEE Trans. Inform. Theory 40(4), pp.
1284–1292, july 1994.

[7] S. Benedetto, G. Montorsi. “Unveiling Turbo

codes: Some results on parallel concatenated

coding schemes”. IEEE Trans. Inform. Theory
42(2), pp. 409–428, 1996.

[8] D. Le Ruyet, H. Vu Thien. “Asymptotical

performances of multiple turbo codes using the

gaussian approximation”. Proc. of ISCTA’01,
Ambleside, UK, pp. 304-308, July 2001.

[9] S. Dolinar,D. Divsalar. “Weight distributions

for turbo codes using random and nonrandom

permutations”. TDA Progress Report 42-122,
Jet Propulsion Lab., Pasadena, CA, Aug. 1995.

[10] D. Le Ruyet, H. Vu Thien. “Design of cycle

optimized interleavers for Turbo codes”. Proc. of
Int. Symp. on Turbo Codes and Related Topics,
Brest, France, pp. 335–338, Sept. 2000.


