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ABSTRACT

In this paper we consider the iterative decoding of channels
with strong phase noise. We propose to estimate the phase
using a message passing algorithm based on particle filtering.
Instead of estimating the phase directly we use the whole es-
timated probability density function for the channel decoder.
Three versions of phase estimators are derived. The simula-
tion results are given for binary LDPC codes. We compare
the proposed iterative data and phase estimators with another
solution where the forward backward algorithm is performed
over the trellis obtained from the discretization of the phase.
The results show that the proposed algorithm achieves a good
compromise between performances and complexity.

1. INTRODUCTION

Phase tracking is an important issue in coherent digital com-
munications. Since estimating jointly the phase and the data is
generally intractable, a number of suboptimal algorithms have
been proposed using a phase estimator followed by a data de-
tector. In order to improve the performance, it is possible to
perform an iterative estimation of the phase and data using
for exemple the Expectation Maximisation (EM) algorithm
[1]. However, this algorithm is efficient only if the phase is
constant during the frame.

In this paper we consider iterative decoding for channels
with strong phase noise. Several iterative decoding algorithms
based on a Bayesian approach have been considered in the lit-
erature for this case. For exemple, it is possible to performthe
the MAP algorithm over the trellis obtained using a phase dis-
cretization approach [2].

Particle filtering (PF) [3] represents the most powerful ap-
proach for the sequential estimation of the hidden state of a
nonlinear dynamic model. During these last years, PF has
been widely applied to digital communication (channel esti-
mation, tracking, synchronisation, ...) [4]

In [5], the authors have proposed to apply the PF for the
phase estimation. Instead of using a particle filter to estimate
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the phase, we propose in this paper to use the whole esti-
mated probability density function of the phase for the chan-
nel decoder. Compared to the phase discretization approach,
the particle filter performs a discretization of the phase space
around the most interesting region. Consequently, it allows to
reduce the complexity of the algorithm.

2. SYSTEM MODEL

We consider the following equivalent baseband complex chan-
nel model at the receiver:

rk = ckejθk + nk k = 0, 1, . . . ,K − 1, (1)

whereck is the channel input symbol at timek taken from a
M-PSK constellationX , nk is a complex gaussian noise with
varianceσ2. θk is the phase noise and can be modelled with
a random walk:

θk = (θk−1 + ∆k) mod2π, (2)

where∆k is a white Gaussian noise with varianceσ2
∆. As a

consequence, we have:

p(θk|θk−1, . . . , θ0) = p(θk|θk−1)

∝ exp

{

−
1

2σ2
∆

(θk − θk−1)
2

}

(3)

We also add an efficient code (turbo code or LDPC).

3. MESSAGE PASSING ALGORITHM

The decision problem is given by:

ĉk = arg max
ck

p(ck|r)

= arg max
ck

∫

θ

p(ck,θ|r)dθ

= arg max
ck

∫

θ

∑

c:cii6=k

p(c,θ|r)dθ (4)



Factor graphs [7] are an useful tool to describe and derive
message passing algorithms for digital communication The
factor graph corresponding to the considered problem is given
in figure 1.
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Fig. 1. Factor graph of the LDPC code and the channel model

p(c,θ|r) can be factorized as follows:

p(c,θ|r) ∝ p(c)p(θ)p(r|θ, c)

∝ p(θ)
K−1
∏

k=0

p(rk|ck, θk)

∝ p(θ)
K−1
∏

k=0

exp

{

−
1

2σ2
|rk − ckejθk |2

}

∝ p(θ0)

K
∏

k=1

p(θk|θk−1)

×

K−1
∏

k=0

exp

{

−
1

2σ2
|rk − ckejθk |2

}

(5)

Instead of performing the exact ML decision rule, we will
apply the particle filter along the given factor graph.

Since we are not interested in studying the implementa-
tion based on the structure of the channel code, we will only
concentrate on the message propagation in the lower part of
the graph.

Following [8], the message from the variable nodeck to
the factor nodefk will be denotedPd(ck) and the message
from fk to θk will be denotedpd(θk). The functionfk(ck, θk)
associated to the factor nodefk is given by:

fk(ck, θk) = p(rk|ck, θk) (6)

We have:

pd(θk) ∝ p(rk|θk)

∝
∑

x∈X

Pd(ck = x)fk(ck = x, θk). (7)

We adopt a forward-backward node activation schedule to
describe the phase-noise evolution. In this scheme we need to
analyze two types of messages. On the one hand, the forward
messages from factor nodep(θk|θk−1) to variable nodeθk

are denoted bypf (θk). These messages can be recursively
computed as follows:

pf (θk) ∝

∫ 2π

0

pd(θk−1)pf (θk−1)p(θk|θk−1) dθk−1 (8)

On the other hand, the backward messages sent from fac-
tor nodep(θk+1|θk) to variable nodeθk are denoted bypb(θk)
and can be recursively computed by:

pb(θk) ∝

∫ 2π

0

pd(θk+1)pf (θk+1)p(θk+1|θk) dθk+1. (9)

Initially, the forward and backward messages are uniformly
distributed. Then the messagepu(θk) from the variable node
θk to the factor nodefk is obtained by combining the forward
and backward messages:

pu(θk) ∝ pf (θk)pb(θk). (10)

Finally, the message from the factor node to variable node
ck is indicated byPu(ck) and is calculated as follows:

Pu(ck) ∝

∫ 2π

0

pu(θk)p(rk|ck, θk) dθk. (11)

After processing these messages, the messagePu(ck) are
processed by the upper part of the factor graph. Then updated
messagesPd(ck) are available for bit decoding or for update
estimation ofPu(θk) andPu(ck).

In [2], the authors propose to discretize the phase space
intoL equally spaced phases and then apply the forward back-
ward algorithm [9] to approximatepf (θk) andpb(θk). How-
ever, at each time in this case the complexity is proportional
to L2 (number of branches of the associated trellis). We thus
propose to reduce this complexity by using PF.

4. PARTICLE FILTER FOR THE PHASE
ESTIMATION

Particle filtering methods, known also as sequential Monte
Carlo methods, are powerful tools for numerical computing
optimal estimators when exact solutions cannot be analyti-
cally derived [3]. They employ discrete measures with ran-
dom supports, the particles, for sequentially estimating poste-
rior probability distributions of the unknowns. The particles



allow a continuous exploration of the phase space thanks to
their evolution in time. Furthermore, the complexity of PF is
directly proportional to the number of particles.

Using a particle filter,pf (θk) is approximated with weighted
particles as follows:

pf (θk) ≈

Npart
∑

i=1

w̃
(i)
k δ(θk − θ

(i)
k ) (12)

whereNpart is the number of particles,̃w(i)
k is the normal-

ized importance weight at timek associated with the particlei
andδ(θk−θ

(i)
k ) denotes the Dirac delta centered inθk = θ

(i)
k .

Initially, all the Np particles are drawn randomly from
θ0 ∼ uniform(−π,+π). At time k, the set of particles from
phase spaceΘk is obtained from the particle setΘk−1. The
time evolution of the particles is achieved with an importance
sampling distribution.

For simplicity reasons, we choose the a prior importance
function [6]:

π(θ
(i)
k |θ

(i)
1:k−1, r1:k) = p(θ

(i)
k |θ

(i)
k−1). (13)

Considering that the noise∆k in (2) is Gaussian, the im-
portance function is a Gaussian distribution with meanθ

(i)
k−1

and varianceσ2
∆. To determine the positions of the particles

at timek from the positions at timek − 1, each particle is
drawn according to the importance function (13). The eval-
uation of the importance function for each particle at timen

enables the calculation of the importance weights [6]:

w
(i)
k = w

(i)
k−1

p(rk|θ
(i)
k )p(θ

(i)
k |θ

(i)
k−1)

π(θ
(i)
k |θ

(i)
1:k−1, r1:k)

. (14)

Using the prior importance function (13), we obtain:

w
(i)
k = w

(i)
k−1p(rk|θ

(i)
k )

∝ w
(i)
k−1pd(θ

(i)
k ) (15)

A major problem with PF is that the discrete random mea-
sure degenerates quickly: all the particles except for a very
few are assigned negligible weights. The degeneracy implies
that the particle filter performance will deteriorate. In order
to reduce this degeneracy, we add a resampling step. Resam-
pling is performed whenever the effective particle sizeNeff

is less than a thresholdNthresh [3].
In this paper we will consider three phase estimation ver-

sions based on the particle filter:

• MMSE phase estimation,

• forward only phase pdf estimation,

• forward backward phase pdf estimation.

In the MMSE phase estimation, frompf (θk) approximated
by the particle filter, we estimatêθk using the MMSE esti-
mate:

θ̂k =

Np
∑

i=1

w̃
(i)
k θ

(i)
k (16)

wherew̃
(i)
k are the normalized weight obtained fromw(i)

k

andPu(ck) is simply given by :

Pu(ck) ≈ exp

{

−
1

2σ2
|rk − ckejθ̂k |2

}

(17)

In the forward only phase pdf (FOPP) estimation, we also
do not calculatepb(θk). We approximatepu(θk) without con-
sidering the backward message :

pu(θk) ≈ pf (θk) (18)

Frompf (θk) we evaluatePu(ck) :

Pu(ck) ≈

Np
∑

i=1

w̃
(i)
k p(rk|ck, θ

(i)
k ) (19)

In the forward backward phase pdf (FBPP) estimation, we
perform a second particle filter in the backward direction in
order to calculatepb(θk) :

pb(θk) ≈

Npart
∑

i=1

w̃
b(i)
k δ(θk − θ

b(i)
k ) (20)

From (2), since we consider a i.i.d. gaussian noise, we can
rewrite the evolution equation as follows

θk = (θk+1 + ∆k) mod2π, (21)

The calculation of the non normalized weight is given by:

w
f(i)
k ∝ w

f(i)
k+1pd(θ

(i)
k ) (22)

The calculation ofpu(θk) as given in equation (11) is
difficult since the support of the two particle filters are dif-
ferent. A solution is provided in [10] however the compu-
tational complexity is quadratic in the number of particles
O(KN2

part). In order to reduce the complexity toO(KNpart),
we propose to simplify the calculation ofpu(θk) by combin-
ing both supports as follows :

pu(θk) ≈
1

2
(pf (θk) + pb(θk)) (23)

ThenPu(ck) is given by :

Pu(ck) ≈
1

2

Np
∑

i=1

w̃
b(i)
k p(rk|ck, θ

b(i)
k )+

1

2

Np
∑

i=1

w̃
f(i)
k p(rk|ck, θ

f(i)
k )

(24)
This solution is clearly suboptimal but performs well in

practice.



5. SIMULATION RESULTS

In this section we present the performance of the proposed PF
algorithm. The considered code is a (3,6)-regular LDPC code
with codewords of length 4000. The chosen modulation is
QPSK. We assume a pilot symbol in every block of 20 trans-
mitted symbols. We considered a severe phase noise model
with σ∆ = 6 [8]. For all the simulations, we perform 10
global iterations between the channel decoder and the phase
estimator. 20 iterations over the LPDC graph are performed
at each global iterations.

In Figure 2 we give the performance obtained using the
MMSE, FOPB and FBPB phase estimation algorithm. We
also add the performance curves of the discretization method
usingL = 20 andL = 32 equispaced phases. The perfor-
mance obtained forL = 32 can be considered as the maxi-
mum achievable performance [2].

1 1.5 2 2.5 3 3.5 4 4.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

known phase
discret L=32
discret L=20
FBPP 256 part
FBPP 64 part
FBPP 16 part
FOPP 256 part
MMSE 256 part

Fig. 2. Performance of the algorithm based on discretization
of the phase and PF algorithm

The simulation results show that theNpart = 256 MMSE
and FOPP phase estimation algorithms perform poorly com-
pared to the other algorithms. The performance obtained for
theNpart = 64 FBPP phase estimation algorithm is close to
the one of theL = 20 discretization method and is about 0.4
dB far from theL = 32 discretization method atBER =
10−3. However, from the complexity point of view, we only
calculateNpart = 64 branch metrics compared toL2 = 400
branch metrics at each instant for the discretization method.
Interestingly, there is only a performance degradation of about
0.25 dB betweenNpart = 16 andNpart = 256 FBPP phase
estimation algorithm.

6. CONCLUSIONS

In this paper we have considered the iterative decoding of
channels with strong phase noise. We have proposed to es-
timate the phase using a message passing algorithms based

on particle filtering. The forward backward phase pdf estima-
tion significantly reduces the computational complexity with
the same or a slight performance degradation. It is of inter-
est to extend these results by evaluating the two particle filter
smoother [10] after having reduce its complexity.
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