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ABSTRACT the phase, we propose in this paper to use the whole esti-
hi ider the | ive decodi t ch Imated probability density function of the phase for the ehan
In this paper we consider the iterative decoding of channelgg| yocqger, Compared to the phase discretization approach

W't.h strong phase noise. we propose to estimate the_ ph_a?r?e particle filter performs a discretization of the phaszcsp
using a message passing algorithm based on particle fgter"ﬂ'around the most interesting region. Consequently, it alltow
Instead of estimating the phase directly we use the whole eSaduce the complexity of the algorithm '

timated probability density function for the channel desod
Three versions of phase estimators are derived. The simula-
tion results are given for binary LDPC codes. We compare
the proposed iterative data and phase estimators with @not : . .
solu?iorfwhere the forward backsvard algorithm is performerc}Ne consider the foIIovymg equivalent baseband complex-chan
over the trellis obtained from the discretization of the ggha hel model at the receiver:

The results show that the proposed algorithm achieves a good rr = cpe% 4+ ny k=0,1,..., K — 1, (1)
compromise between performances and complexity.

2. SYSTEM MODEL

wherecy, is the channel input symbol at timetaken from a
M-PSK constellationt, n;, is a complex gaussian noise with
1. INTRODUCTION variances2. 6, is the phase noise and can be modelled with

N . . . o a random walk:
Phase tracking is an important issue in coherent digital-com

munications. Since estimating jointly the phase and theidat Or = (Or—1 + Ar) mod2r, 2
generally mtractab_le, anumber of_suboptlmal algorithisngeh whereA, is a white Gaussian noise with varianeg. As a
been proposed using a phase estimator followed by a data de- i
X o X consequence, we have:

tector. In order to improve the performance, it is possible t
perform an iterative estimation of the phase and data using
for exemple the Expectation Maximisation (EM) algorithm — p(6,|0x_1,...,00) = p(0x|0k_1)
[1]. However, this algorithm is efficient only if the phase is
constant during the frame. x exp { —

In this paper we consider iterative decoding for channels
with strong phase noise. Several iterative decoding dlyos
based on a Bayesian approach have been considered in the lit-
erature for this case. For exemple, it is possible to perttian
the MAP algorithm over the trellis obtained using a phase dis 3. MESSAGE PASSING ALGORITHM
cretization approach [2]. . L )

Particle filtering (PF) [3] represents the most powerful ap-The decision problemis given by:
proach for the sequential estimation of the hidden state of a

2
20%

L —ek_lf} 3)

We also add an efficient code (turbo code or LDPC).

nonlinear dynamic model. During these last years, PF has ¢, = arg max p(cg|r)
been widely applied to digital communication (channel-esti k
mation, tracking, synchronisation, ...) [4] = arg max/p<ck 0|r)do
In [5], the authors have proposed to apply the PF for the ct Jo
phase estimation. Instead of using a particle filter to estém / 0lr)do
= 4
argmax | > ple,Olr) @)
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Factor graphs [7] are an useful tool to describe and derive
message passing algorithms for digital communication The

factor graph corresponding to the considered problem ergiv Pa(B) < p(ri|0k)

in figure 1. o > Pu(cr = z) frlcr = z,01). )
reX
% % % We adopt a forward-backward node activation schedule to
describe the phase-noise evolution. In this scheme we peed t

analyze two types of messages. On the one hand, the forward
messages from factor nogéfy|0;_1) to variable node;,

are denoted by (6;). These messages can be recursively
computed as follows:

interleaver

27

G Cyx
Py (1) o< / Pa(Ox—1)Ps(Ok—1)p(Ok|0k—1) dOr—1  (8)
0
f
h “ On the other hand, the backward messages sent from fac-
— tor nodep(6y.+1|0x) to variable nodéd;, are denoted by, (65.)
g ‘—'pf—(;) 7 e o and can be recursively computed by:

. 2
Fig. 1. Factor graph of the LDPC code and the channel model py(0) o / Pa(Oks1)ps (01 )p(Ori1 0k) Oy (9)
0

p(c, O|r) can be factorized as follows: Initially, the forward and backward messages are uniformly
distributed. Then the messagg(d;.) from the variable node
;. to the factor nodg, is obtained by combining the forward

p(c, O]r) o< p(c)p(8)p(r|6, c) and backward messages:
K-1
o p(0) [[ p(rilex, 0x) Pu(k) o< py (O )po(Br)- (10)
1k<:O1 Finally, the message from the factor node to variable node
0 - 1 0,12 ¢k is indicated byP, (cx) and is calculated as follows:
x p(0) exp _T‘z‘rk_cke |
k=0 27
Pu(ck) X / pu(ﬂk)p(rk|ck7 Qk) d@k (11)
0

=

o p(0o) | | p(Ok|0k—1)

After processing these messages, the mesBagg,) are

k
processed by the upper part of the factor graph. Then updated

Il
-

K-1
« H exp{ — %m, — cpel% |2 message®,(cy) are available for bit decoding or for update
k=0 2 estimation ofP, (6;) and P, (c).
(5) In [2], the authors propose to discretize the phase space

into L equally spaced phases and then apply the forward back-
Instead of performing the exact ML decision rule, we will ward algorithm [9] to approximatgy (6;) andp(6y). How-
apply the particle filter along the given factor graph. ever, at each time in this case the complexity is proportiona
Since we are not interested in studying the implementato L? (number of branches of the associated trellis). We thus
tion based on the structure of the channel code, we will onlypropose to reduce this complexity by using PF.
concentrate on the message propagation in the lower part of
the graph. 4. PARTICLE FILTER FOR THE PHASE
Following [8], the message from the variable nageto ESTIMATION
the factor nodef), will be denotedP;(c;) and the message
from f;, to 6, will be denotedb, (). The functionfy, (cx, 6x) Particle filtering methods, known also as sequential Monte
associated to the factor nodg is given by: Carlo methods, are powerful tools for numerical computing
optimal estimators when exact solutions cannot be analyti-
Fioler, 0x) = p(rk|ck, 05) (6)  cally derived [3]. They employ discrete measures with ran-
dom supports, the particles, for sequentially estimativgfg-
We have: rior probability distributions of the unknowns. The pale&



allow a continuous exploration of the phase space thanks to Inthe MMSE phase estimation, from (6,) approximated
their evolution in time. Furthermore, the complexity of BF i py the particle filter, we estimat@c using the MMSE esti-
directly proportional to the number of particles. mate:

Using a particle filterp £ (6, is approximated with weighted

particles as follows: N
b= w6 (16)
T (i) =
~ ~ (7 _ 1 . .
py(Ok) = Z Wy, 0(0 = 07) (12) where!” are the normalized weight obtained fran)’’
=t and P, (c) is simply given by :
whereN,q is the number of particles?;,(j) is the normal-
ized importance weight at timeassociated with the partide Py(cy) ~ exp{ — im B Ckejék 2 (17)
ands (6, — 9,(;)) denotes the Dirac delta centered)jn= 9,(;). 202
Initially, all the N,, particles are drawn randomly from |n the forward only phase pdf (FOPP) estimation, we also

fo ~ uniform(—m, +-). Attime k, the set of particles from o not calculatey, (6),). We approximate,, () without con-

phase spac®, is obtained from the particle s€t;_;. The  sjdering the backward message :

time evolution of the particles is achieved with an impocen

sampling distribution. pul(01) ~ ps(Or) (18)
For simplicity reasons, we choose the a prior importance )

function [6]: Fromp;(6;) we evaluateP,, (cx) :

. . NP X .
(0810101 1x) = (016} ). (13) Pu(ex) = Y @y p(rilex, 6) (19)
i=1
In the forward backward phase pdf (FBPP) estimation, we
perform a second particle filter in the backward direction in
order to calculate, (6y,) :

Considering that the noiss;; in (2) is Gaussian, the im-
portance function is a Gaussian distribution with mégbl
and variancerZ . To determine the positions of the particles
at time k& from the positions at timé& — 1, each particle is

drawn according to the importance function (13). The eval- Npart
uation of the importance function for each particle at time po(Ox) ~ Y w50, — 0, (20)
- - . k k k
enables the calculation of the importance weights [6]: =1
ONROING From (2), since we consider ai.i.d. gaussian noise, we can
w® — @ p(rel0y, )p(0;,716,2,) (14) ewrite the evolution equation as follows
E — Wg—1 BYNC :
(01107 1o en)
0, = (9k+1 + Ak) mod 2, (22)
Using the prior importance function (13), we obtain: The calculation of the non normalized weight is given by:
@ o® pir 1 wi ocw{{pa(6;”) (22)
W w21 p(rrl6)”) . . . . .
) ) The calculation ofp,(6x) as given in equation (11) is
x wy,”1pa(fy”) (15)  difficult since the support of the two particle filters are-dif

Amai bl ith PE is that the di ¢ q ferent. A solution is provided in [10] however the compu-
major probiem wi ISthatIne discrete random meagiqn ) complexity is quadratic in the number of particles

sure degenerates quickly: all the particles except for & VerO(KN;"At). In order to reduce the complexity @K Npqr. ),

few are assigned negligible weights. The degeneracy impline ronose to simplify the calculation of (6.) by combin-
that the particle filter performance will deteriorate. Ider ing Eotﬁ supports zfs ]:%Ilows . pLOk) by

to reduce this degeneracy, we add a resampling step. Resam-

pling is performed whenever the effective particle siég ¢ 1

is less than a threshol; ..., [3]- PulOk) ~ §(pf(e’€) + Py (6r)) (23)
In this paper we will consider three phase estimation ver- - Thenp,(¢;) is given by :

sions based on the patrticle filter: v N

1 <X _bii bli 1< _s; )
o MMSE phase estimation, Puler) = 5 > ap O prilex, Gk(Z)Hi > wp(reler, 617
=1 =1

e forward only phase pdf estimation, (24)

This solution is clearly suboptimal but performs well in
o forward backward phase pdf estimation. practice.



5. SSIMULATION RESULTS on particle filtering. The forward backward phase pdf estima
tion significantly reduces the computational complexitytwi
In this section we present the performance of the proposed Rke same or a slight performance degradation. It is of inter-
algorithm. The considered code is a (3,6)-regular LDPC codest to extend these results by evaluating the two partidé fil
with codewords of length 4000. The chosen modulation ismoother [10] after having reduce its complexity.

QPSK. We assume a pilot symbol in every block of 20 trans-
mitted symbols. We considered a severe phase noise model
with oo = 6 [8]. For all the simulations, we perform 10
global iterations between the channel decoder and the phas[el]
estimator. 20 iterations over the LPDC graph are performed
at each global iterations.

In Figure 2 we give the performance obtained using the
MMSE, FOPB and FBPB phase estimation algorithm. We
also add the performance curves of the discretization ndetho [2]
usingL = 20 and . = 32 equispaced phases. The perfor-
mance obtained fof. = 32 can be considered as the maxi-
mum achievable performance [2].
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Fig. 2. Performance of the algorithm based on discretization
of the phase and PF algorithm
[7]
The simulation results show that th&,,,, = 256 MMSE
and FOPP phase estimation algorithms perform poorly com-
pared to the other algorithms. The performance obtained for
the N+ = 64 FBPP phase estimation algorithm is close to
the one of thel, = 20 discretization method and is about 0.4
dB far from thel. = 32 discretization method aBER =
10~3. However, from the complexity point of view, we only
calculateN,,,: = 64 branch metrics compared & = 400 [9]
branch metrics at each instant for the discretization ntetho
Interestingly, there is only a performance degradatiorotia
0.25 dB betweemN,q,; = 16 and Ny, = 256 FBPP phase
estimation algorithm.
[10]

6. CONCLUSIONS
In this paper we have considered the iterative decoding of

channels with strong phase noise. We have proposed to es-
timate the phase using a message passing algorithms based
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