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Abstract—Instead of reduced-state decision-feedback sequence
estimation (DFSE) equalization which is the state-of-the-art so-
lution for the complexity reduction of the full-state Viterbi de-
coder over a fading multipath channel, we propose a new reduced-
complexity maximum likelihood sequence detector (MLSD) based
on the particle filtering technique. The computational complexity
of this new detector is adapted according to the signal-to-noise ra-
tio. Compared to the DFSE detector the particle detector offers
a better trade-off between performance and computational com-
plexity.

I. I NTRODUCTION

THE optimal detection technique of a digital signal cor-
rupted by InterSymbol Interference (ISI) and Additive

White Gaussian Noise (AWGN) is Maximum Likelihood Se-
quence Estimation (MLSE) if the channel parameters are per-
fectly known [1]. Usually, the optimal Maximum Likelihood
Sequence Detector (MLSD) which minimizes the sequence er-
ror probability, is implemented using a Viterbi Decoder (VD)
[2]. The main problem associated with this detector is the
computational complexity of the VD. In fact, it might become
quickly prohibitive in the communication systems which op-
erate with high level modulations in long memory channels.
We assume here that the dominant factor which determines the
complexity of the VD is the channel memory.

Many researches have been conducted in order to reduce the
computational complexity of the VD by selecting a subset of
the states in the code trellis, as in the Reduced-State Sequence
Estimation (RSSE) [3] and in the Decision-Feedback Sequence
Estimation (DFSE) [4], or by selecting a subset of the paths in
the code trellis, as in the M-algorithm [5] and in the T-algorithm
[6].

In this paper, we propose an original approach to apply the
particle filtering technique [7] to the detection problem in order
to develop a new suboptimal MLSD. The key idea is to explore
only a subset of the possible transmitted sequences with a tree-
search algorithm using particles. The selected sequences of the
tree are the trajectories of particles, which evolve statistically
in time according to the probability that a certain symbol was
transmitted conditionally to the received signal.

This paper is organized as follows. In Section II the system
model is presented. The structure of the particle detector is
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Fig. 1. Discrete-time equivalent lowpass transmission system model.

derived in Section III. Finally, simulation results are given in
Section IV.

II. SYSTEM MODEL

Fig. 1 shows the discrete-time equivalent lowpass transmis-
sion model considered in this paper. We will analyze only the
binary modulation case. The generalization to more complex
modulations is straightforward.

The information sequence is composed of independent and
identically distributed bits. Each bitbk is transmitted within
the symbol interval of durationT . The information bits are
organized into frames composed of a preamble of known bits
used in the estimation of the Channel Impulse Response (CIR),
a block of information bits and a tail of known bits for prop-
erly terminating the trellis. The discrete-time channel model is
represented by a symbol-spaced Finite Impulse Response (FIR)
filter, depicted on Fig. 2. At the detection we assume the knowl-
edge of the CIR coefficients{fk,l}L

l=0, whereL indicates the
overall channel memory. Hence, the matrix model of the re-
ceived signal at the input of the detector is given by:

rk = B · Fk + nk, (1)
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Fig. 2. Channel Model.



where:

rk = [Re{rk} Im{rk}],
B = [bk bk−1 . . . bk−L] = [bk Bk−1],

Bk−1 = [bk−1 . . . bk−L],

Fk =




Re{fk,0} Im{fk,0}
...

...
Re{fk,L} Im{fk,L}


 ,

nk = [Re{nk} Im{nk}].
The vectornk is a discrete-time complex AWGN with zero
mean, scalar varianceσ2

n and independent real and imaginary
components.

III. T HE PARTICLE DETECTOR

The particle filtering technique is a sequential Monte Carlo
method used in non-linear/non-Gaussian tracking problems [7].
It is based upon point mass or particle representations of prob-
ability densities, which can be applied to any state space model
and which generalize the traditional Kalman filtering methods.
In this paper, we apply the particle filtering approach to the de-
tection problem, in order to approximate the a posteriori prob-
ability density of the information symbols with particles. With
this intention, we develop a MLSD which estimates the se-
quenceBK

1 = {bk}K
k=1 of information bits, whereK is the

number of bits, maximizing the following probability:

B̂K
1 = arg max

BK
1

p(BK
1 |RK

1 ), (2)

whereRK
1 = {rk}K

k=1 indicates the sequence of received sam-
ples from time1 to K. The particle filtering hypotheses for (1)
are as follows:

• The sequenceBK
1 is a Markov random process of orderL:

p(bk|b1, · · · , bk−1) = p(bk|Bk−1);

• The received sample at timek is independent given the
transmitted bit at timek and theL precedent transmitted
bits:

p(rk|B, A) = p(rk|B) ∀A.

We can determinate the time evolution of the conditional prob-
ability p(BK

1 |RK
1 ) in two stages:

1) Prediction: Calculation of the probabilityp(BK
1 |RK−1

1 )
from the probabilityp(BK−1

1 |RK−1
1 );

2) Correction: Calculation of the probabilityp(BK
1 |RK

1 )
from the probabilityp(BK

1 |RK−1
1 ).

For the first stage, applying the definition of conditional prob-
ability and considering thatBK

1 is a Markov process, we can
write:

p(BK
1 |RK−1

1 ) = p(bK |BK−1
1 , RK−1

1 )p(BK−1
1 |RK−1

1 )
= p(bK |BK−1)p(BK−1

1 |RK−1
1 ). (3)

For the second stage, using the Bayes theorem and the hypoth-
esis of independence of the received samples, the conditional
probabilityp(BK

1 |RK
1 ) can be expressed as:

p(BK
1 |RK

1 ) =
p(rK |BK

1 , RK−1
1 )p(BK

1 |RK−1
1 )

p(rK |RK−1
1 )

=
p(rK |B)p(BK

1 |RK−1
1 )∫

p(rk|B)p(BK
1 |RK−1

1 )dBK
1

. (4)

By substitution of (3) into (4), (4) becomes:

p(BK
1 |RK

1 ) =

p(rK |B)p(bK |BK−1)p(BK−1
1 |RK−1

1 )∫
p(rK |B)p(bK |BK−1)p(BK−1

1 |RK−1
1 )dBK

1

. (5)

From (5), we can derive the classical result of the particle fil-
tering technique. The conditional probabilityp(BK

1 |RK
1 ) is ap-

proximated by particles, characterized by a supportbk evolving
in time according to the transition probabilityp(bK |BK−1) and
a weight depending on the probabilityp(rK |B) [7].

In this paper, we consider an original way to approximate the
conditional probabilityp(BK

1 |RK
1 ) based on the particle filter-

ing method namedconditional drawing[8]. We observe that
using the Bayes theorem and the hypothesis of independence of
the received samples, we can write:

p(rK |BK−1)p(bK |BK−1, rK) = p(rK |B)p(bK |BK−1). (6)

Therefore, (5) is equivalent to:

p(BK
1 |RK

1 ) =

p(rK |BK−1)p(bK |BK−1, rK)p(BK−1
1 |RK−1

1 )∫
p(rK |BK−1)p(bK |BK−1, rK)p(BK−1

1 |RK−1
1 )dBK

1

. (7)

Analogically to the classical result, we can approximate the
conditional probabilityp(BK

1 |RK
1 ) with particles, which evolve

in time according to the conditional transition probability
p(bK |BK−1, rK) and have a weight depending on the prob-
ability p(rK |BK−1). First, we will calculate the conditional
transition probabilityp(bK |BK−1, rK) and then the weight of
a particle.

In the binary modulation case, the support of the particles
can assume the valuesbK = 1 or bK = −1 and hence, we must
determine the two conditional transition probabilitiesp(bK =
1|BK−1, rK) andp(bK = −1|BK−1, rK). For simplicity, we
consider only the probability for the bitbK = 1. Applying the
Bayes theorem, the conditional transition probability is given
by:

p(bK = 1|BK−1, rK)

=
p(rK |bK = 1,BK−1)p(bK = 1|BK−1)

p(rK |BK−1)

=
p(rK |B+)p(bK = 1|BK−1)∫

p(rK |B)p(bK |BK−1)dbK
, (8)



where we have definedB+ = [bK = 1 BK−1] and similarly
B− = [bK = −1 BK−1]. Owing to the independence and
the equally probability of the information bits, we can write:

p(bK = 1|BK−1) = p(bK = −1|BK−1) =
1
2
. (9)

Therefore, (8) becomes:

p(bK = 1|BK−1, rK) =
p(rK |B+)

p(rK |B+) + p(rK |B−)
. (10)

Inspecting (1), we observe that the probability densities
p(rK |B+) and p(rK |B−) are Gaussian with zero mean and
varianceσ2

n:

p(rK |B) =
1

2π
√

σ2
n

exp
{
− (rK − BFK)(rK − BFK)T

2σ2
n

}
,

(11)
whereT is the transposition operator.

In order to calculate the weight of a particle, we rewrite (7)
from timeK − 1 to 1:

p(BK
1 |RK

1 ) =

p(rK |BK−1)··p(r1|B0)p(bK |BK−1, rK)··p(b1|B0, r1)∫
p(rK |BK−1)··p(r1|B0)p(bK |BK−1, rK)··p(b1|B0, r1)dBK

1

.

(12)
We use the particle approximation for the terms related to the
particle evolution:

p(bK |BK−1, rK) . . . p(b1|B0, r1) '

Np∑
n=1

1
Np

δ(bK − bn
K) . . . δ(b1 − bn

1 ), (13)

whereNp is the number of particles andbi
k is the support of the

particle i at timek which can assume the values 1 or -1. We
notice that the terms related to the particle evolution are taken
into account in the conditional transition probability calculation
and consequently, don’t influence the weight determination. By
substitution of (13) into (12), (12) becomes:

p(BK
1 |RK

1 ) '

Np∑
n=1

p(rK |Bn
K−1) · ·p(r1|Bn

0 )∑Np

m=1 p(rK |Bm
K−1) · ·p(r1|Bm

0 )
δ(bK−bn

K)··δ(b1−bn
1 ),

(14)
where the term multiplying the Dirac delta represents the
weight of the particlen at timeK. This weight can be cal-
culated recursively with the expression:

ρn
k =

ρn
k−1p(rk|Bn

k−1)∑Np

m=1 ρm
k−1p(rk|Bm

k−1)
, (15)
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Fig. 3. Tree of the particle MLSD.

for k = 1, . . . , K with the initial conditionρn
0 = 1/Np for

n = 1, . . . , Np. In (15), the probabilityp(rk|Bn
k−1) can be

determined in the following way:

p(rk|Bn
k−1) =

∫
p(rk|bn

k ,Bn
k−1)p(bn

k |Bn
k−1)dbn

k

=
1
2
p(rk|Bn

+) +
1
2
p(rk|Bn

−). (16)

In order to develop a particle MLSD based on the conditional
drawing technique, we use a tree-search algorithm to explore
the space of the possible transmitted sequences. The root of the
tree consists in a group holding all theNp particles. Initially,
the particles are equally weighted. The first bit to be estimated
can assume the values 1 or -1 and hence, the particles divide
in two groups proportionally to the conditional transition prob-
abilitiesp(b1 = 1|B0, r1) andp(b1 = −1|B0, r1), whereB0

corresponds to the lastL bits of the preamble sequence and
consequently, represents the initial state. At the next instant the
particles will be divided in four groups. So the groups of parti-
cles form the nodes of a tree. An example of a particle tree is
represented in Fig. 3. We analyze in details the generic tran-
sition process from timek − 1 to time k. For each group at
time k − 1, we calculate the conditional transition probabili-
tiesp(bk = 1|Bk−1, rk) andp(bk = −1|Bk−1, rk), given by
(10). After the division of the particles for each group at time
k−1 proportionally to the conditional transition probability, the
empty groups are eliminated. For the survivor groups at time
k, we calculate the weight associated with a particle according
to (15). We notice that the particles in a group have the same
weight and that the weight of a group is equal to the product
between the number of particles in the group and the weight of
a particle.

As in the VD, the decision on the information bits in the par-
ticle MLSD is carried out after the processing of5L received
samples. The particle detector estimates at timek + 5L the



bit at timek. This corresponds to the bitbk of the maximum
weight group at timek + 5L. At the end of the information
sequence, the particle algorithm must be terminated with theL
known bits of the tail sequence in order to finish in a known
final state. In this closing phase, the division of the particles in
groups is deterministic; the particles transfer in the group corre-
sponding to the known transition bit. Moreover, the calculation
of the weights is modified. In (16), only the probability associ-
ated to the known bit is considered, because the other is equal
to zero.

In the particle detector described above, the particles are ini-
tially concentrated in one group and during the processing of
each received sample, they are spread in the space of the pos-
sible transmitted sequences. The maximum degree of explo-
ration of this space is given by the number of particles. When
each group contains only one particle, some particles can ex-
plore improbable zones. In order to improve the exploration
around the most probable zones, we can force a particle redis-
tribution. The redistribution is a very critical task, because the
performance strongly depends on it. For example, we can redis-
tribute the particles everyL bits: the particles in groups with a
weight inferior to1/Np are moved in the group with maximum
weight.

IV. SIMULATION RESULTS

In this section, we present simulation results depicting the
performance of the proposed particle MLSD. The adopted per-
formance measure is the Bit Error Rate (BER) versus the
Signal-to-Noise Ratio (SNR)Eb/N0, whereEb denotes the av-
erage bit energy andN0 the unilateral power spectral density of
the noise. We determine the performance for a Global System
for Mobile communications (GSM) system. We assume that
the receiver detects only a slot for each Time Division Mul-
tiple Access (TDMA) frame, constituted by 8 slots. A GSM
slot consists in two burst of 58 information bits separated by
a midamble sequence of 26 known bits. Reference [9] shows
that the backward detection of the first burst and the forward
detection of the second burst give approximately the same per-
formance. Therefore, we can consider only the forward detec-
tion of the second burst. The modulation scheme corresponds
to a discrete-time linearized representation of a Gaussian Min-
imum Shift Keying (GMSK) signal [10], in order to simplify
the structure of the demodulator. By means of a shift phase, the
received signal at the input of the detector is described by (1).
For the generation of the channel coefficients, perfectly known
by the receiver, we consider two models. In the first model, the
channel memoryL is equal to 7 and the channel coefficients are
given by:

Re{fk,l} = al cos(2πfd,lkTs)
Im{fk,l} = al sin(2πfd,lkTs), (17)

for l = 0, . . . , 7. The amplitudes are chosen in order to obtain
a phase-minimal channel with unitary energy:

[a0, . . . , a7] = [0.56, 0.49, 0.42, 0.35, 0.28, 0.21, 0.14, 0.07].

The Doppler frequencies in Hz associated with each channel
path are:

[fd,0, . . . , fd,7] = [10, 20, 30, 40, 50, 60, 70, 80].

The sampling periodTs is equal to the symbol intervalT =
3.69µs.

For the second model, we consider the 12-tap Hilly Terrain
(HT) GSM channel model, described in [11]. The coefficients
{fk,l}L

l=0 are generated using a bank of time-shifted indepen-
dent Rayleigh flat fading channel simulators. In each simu-
lator, a white complex Gaussian noise passes through a digi-
tal second-order low-pass Chebyshev filter followed by a fifth-
order Butterworth filter, which impart the Rayleigh Doppler
spectrum. In simulations, the frequency Doppler for each path
is equal to 83 Hz, which corresponds to a vehicle speed of 100
km/h for a 900 MHz GSM system. The channel memoryL of
a HT channel is equal to 6.

We compare the performance of the particle detector with the
performance of a DFSE detector. The DFSE detector provides
a complexity reduction of the receiver through the reduction of
the number of the Viterbi states. The overall channel memory
is considered and the terms of residual ISI are corrected in a
Per-Survivor Processing (PSP) way along each survivor path.
Fig. 4 shows the performance obtained for the first channel
model. The gap between the performance of the full-state VD
and the Particle Detector (PD) with 128 particles confirms that
the PD is a suboptimum detection algorithm. The performance
of the DFSE detector with 16 states and the PD with 8 and 128
particles are very close except at highEb/N0 where the per-
formance of the PD is slightly better. On the other hand, if we
reduce the number of states of the DFSE detector to 8 states,
we can observe an error floor at10−3. The computational com-
plexity of these different detectors for the first channel model is
depicted in Fig. 5. Unlike the DFSE detector, the computational
complexity of the PD is adapted according to the quality of the
received signal. As a consequence, for the same performance,
except at lowEb/N0, the complexity of the PD is always lower
than the DFSE detector. We can observe a similar behavior of
the PD and of the DFSE detector for the HT100 channel model,
as shown in Fig. 6. For this channel model, the computational
complexity comparison is given in Fig. 7.

V. CONCLUSION

A reduced-complexity MLSD based on the particle filtering
technique has been proposed and analyzed. The particles ar-
ranged in groups statistically explore the space of the possible
transmitted sequences forming a tree. The number of paths ex-
amined by groups of particles depends on the quality of the
received signal. In fact, for high SNR the particles remain con-
centrated in one group only, whereas for low SNR they divide
into several groups. This means that the PD complexity is lower
than that of a detector implemented using a Viterbi algorithm
for a equal number of particles and states. Moreover, if we re-
duce strongly the computational complexity, the PD has shown
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Fig. 4. BER versusEb/N0 for the first channel model.
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Fig. 5. Computational complexity for the first channel model.

better performance than that of a DFSE detector for the same
number of particles and states. Hence, we can conclude that the
PD represents a very good trade-off between error rate perfor-
mance and computational complexity especially for communi-
cation systems operating with high level modulations and over
long memory channels.
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