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ABSTRACT

In this paper we propose a new timing error detector for tim-
ing tracking loops inside the Rake receiver in DS-CDMA.
Based on a particle filter, this timing error detector jointly
tracks the delays of each path of the frequency selective
channels. The proposed scheme avoids the drawback of the
classical early late gate detector which is not able to sepa-
rate closely spaced paths. Simulation results show that the
proposed detector outperforms the conventional early late
gate detector in indoor scenarios.

1. INTRODUCTION

For DS-CDMA systems, the adapted filter generally used
is the Rake receiver. This receiver is composed of a set of
correlators associated with the most significant paths of the
multipath channels. The outputs of these branches are com-
bined to estimate the transmitted symbols. The performance
of the Rake receiver strongly depends on the Timing Error
Detector (TED). Indeed, we need to estimate the delay of
each path: after the acquisition phase where the number of
the most significant paths is evaluated and a coarse deter-
mination of the delays is performed, the tracking phase is
started. The tracking phase is usually achieved by using
an Early Late Gate-TED (ELG-TED) associated with each
path. It is well known that the ELG-TED cannot separate
the individual paths when they are closer than one chip pe-
riod from other paths. This scenario corresponds for ex-
ample to the indoor scenario. Recent researches have been
conducted on time tracking in frequency selective fading en-
vironments [4] [5].

In this paper we propose to use the Particle Filtering
(PF) or Sequential Monte Carlo (SMC) methods for the es-
timation of the delays of the paths in multipath fading chan-
nels. The PF methods [6] represent the most powerful ap-
proach for the sequential estimation of the hidden state of a
nonlinear dynamic model. The solution to this problem de-
pends on the knowledge of the Posterior Probability Density
(PPD) of the hidden state given the observations. Except
in a few special cases, it is impossible to calculate analyt-
ically a sequential expression of this PPD. It is necessary

to adopt numerical approximations. The PF methods allow
to approximate iteratively the PPD of the hidden state by
weighted points or particles which evolve in the state space.
Therefore, these methods provide a discrete approximation
of the continuous space of the hidden state.

This paper is organized as follows. In Section 2, we
will introduce the system model. Then in Section 3, we will
describe the PF-based TED (PF-TED). In Section 4, we will
give simulation results. Finally, we will draw a conclusion
in Section 5.

2. SYSTEM MODEL

We consider a DS-CDMA system sending a complex data
sequence{sn} . The data symbols are spread by a spreading
sequence{dm}Ns−1

m=0 whereNs is the spreading factor.
The resulting baseband equivalent transmitted signal is

given by:

e(t) =
∑

n

sn

Ns−1
∑

m=0

dmg(t − mTc − nT ), (1)

whereTc andT are respectively the chip and symbol period
andg(t) is the impulse response of the root-raised cosine fil-
ter with rolloff factor equal to 0.22 in the case of the UMTS
[1].

h(t, τ) denotes the overall impulse response of the mul-
tipath propagation channel withL independent paths (WS-
SUS model):

h(t, τ) =

L
∑

l=1

hl(t)δ(τ − τl(t)). (2)

Each path is characterized by its time-varying delayτl(t)
and channel coefficienthl(t).

The signal at the output of the matched filter is given by:

r(t) =
L

∑

l=1

hl(t)
∑

n

sn

Ns−1
∑

m=0

dmRg(t−mTc−nT−τl(t))+ñ(t),

(3)
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Fig. 1. Equivalent lowpass transmission system model.

whereñ(t) represents the white gaussian noisen(t) filtered
by the matched filter and

Rg(t) =

∫ +∞

−∞

g∗(τ)g(t + τ)dτ (4)

is the total impulse response of the transmission and re-
ceiver filters.

Fig. 1 shows the equivalent lowpass transmission model
considered in this paper.

3. PARTICLE FILTERING FOR THE TIMING
ERROR DETECTION

In this paper, we propose to use the PF methods in order
to track the delay of each individual path of the channel.
We assume that the acquisition phase has allowed us to de-
termine the number of the most significant paths and to
roughly estimate their delay.

The PF methods are used to sequentially estimate time-
varying quantities from measures provided by sensors. In
general the physical phenomenon is represented by a state
space model composed of two equations: the first equation
describes the evolution of the unknown quantities called
hidden state (evolution equation) and the second equation
the relation between the measures called observations and
the hidden state (observation equation). Given the initial
distribution of the hidden state, the estimation of the hid-
den state at timet based on the observations until timet is
known as Bayesian inference or Bayesian filtering. This es-
timation can be obtained through the knowledge of two dis-
tributions: the PPD of the sequence of hidden states from
time1 to timet given the corresponding sequence of obser-
vations and the marginal distribution of the hidden state at
time t given the sequence of the observations until timet.
Except in a few special cases including linear Gaussian state
space models, it is impossible to express analytically these
distributions. The PF methods provide a discrete approxi-
mation of the distributions, which can be updated when a
new observation is available. The support of the distribu-
tions is discretized by particles, which are weighted samples
evolving in time.

Tracking the delay of the individual channel paths can
be interpreted as a Bayesian inference. The delays are the
hidden state of the system and the model (3) of the received
samples relating the observations to the delays represents
the observation equation. We notice that this equation is
nonlinear with respect to the delays and as a consequence,
we cannot analytically estimate the delays. To overcome
this nonlinearity, we propose to apply the PF methods. The
PF methods have been previously considered for the delay
estimation in DS-CDMA systems [2]: the PF methods are
used to jointly estimate the data, the channel coefficients
and the propagation delay. The delays of each channel path
are supposed fixed and multiple of the sampling time. Then,
these delays are known and only the propagation delay is es-
timated. In this paper, the approach is different. We suppose
that each channel path has a time-varying delay, unknown at
the receiver. This situation can represent for example an in-
door wireless communication. We assume that the informa-
tion symbols are known or have been estimated, since the
channel is typically estimated using known pilot symbols
contained in a specific channel, as the Common Pilot Chan-
nel (CPICH) of the UMTS. We apply the PF methods only
to the estimation of the delays of each channel path, consid-
ering that the channel coefficients are known. In the pres-
ence of unknown channel coefficients, the PF-TED must be
associated with a channel estimator.

The proposed PF-TED operates on samples from the
matched filter output taken at an arbitrary sampling rate
1/Ts (at least Nyquist sampling). Then, the samples are
processed by means of interpolation and decimation in or-
der to obtain intermediate samples at the chip rate1/Tc.
These samples are the input of the particle filter. The par-
ticle filter works at the symbol rate1/T , exploiting all the
information contained in the chips of a symbol period. The
here proposed PF algorithm represents the adaptation of the
PF methods to a DS-CDMA system.

We will consider that the delays evolve slowly in time
and hence, that their evolution can be described with the
following first order AutoRegressive (AR) model:















τ1(n) = α1τ1(n − 1) + v1(n)
...

τL(n) = αLτL(n − 1) + vL(n)

, (5)

whereα1, · · · , αL describe the possible time variation of
the delays from a time to the next one andv1, · · · , vL are
AWGN with zero mean and varianceσ2

v [3].

The simulations give similar results for the Minimum
Mean Square Error (MMSE) method and the Maximum A
Posteriori (MAP) method. Hence, we choose to adopt the
MMSE solution that is the simplest one in terms of compu-
tational complexity. The MMSE estimation is given by the



following expectation:

τ̂(n) = E[τ(n)|r(1 : n)], (6)

whereτ(n) = {τ1(n), · · · , τL(n)} andr(1 : n) is the se-
quence of received samples from time1 to n. The calcu-
lation of (6) involves the knowledge of the marginal distri-
bution p(τ(n)|r(1 : n)). In order to obtain samples from
the marginal distribution, we use the Sequential Importance
Sampling (SIS) approach [7]. Applying the definition of the
expectation, (6) can be expressed as follows:

τ̂(n) =

∫

τ(n)p(τ(n)|r(1 : n))dτ(n). (7)

The aim of the SIS technique is to approximate the marginal
distributionp(τ(n)|r(1 : n)) with weighted particles:

p(τ(n)|r(1 : n)) ≈

Np
∑

i=1

w̃(i)(n)δ(τ(n) − τ (i)(n)), (8)

whereNp is the number of particles,̃w(i)(n) is the normal-
ized importance weight at timen associated with the parti-
cle i andδ(τ(n)− τ (i)(n)) denotes the Dirac delta centered
in τ(n) = τ (i)(n).

Initially, the particles are in the same stateτ (i)(0) for
i = 1, . . . , Np provided by the acquisition phase. The time
evolution of the particles is achieved with an importance
sampling distribution. For the transition from timen − 1 to
timen, the particles are drawn according to the importance
function π(τ (i)(n)|τ (i)(1 : n − 1), r(1 : n)). Observing
that the relation between the observations and the delays is
nonlinear, we choose a prior importance function [7]:

π(τ (i)(n)|τ (i)(1 : n−1), r(1 : n)) = p(τ (i)(n)|τ (i)(n−1)).
(9)

Considering that the noisesvl(n) for l = 1, · · · , L in (5)
are Gaussian, the importance function for each delayl is
a Gaussian distribution with meanαlτ

(i)
l (n − 1) and vari-

anceσ2
v . To determine the positions of the particles at time

n from the positions at timen − 1, each particle is drawn
according to (9). The evaluation of the importance func-
tion for each particle at timen enables the calculation of the
importance weights [7]:

w(i)(n) = w(i)(n−1)
p(r(n)|τ (i)(n))p(τ (i)(n)|τ (i)(n − 1))

π(τ (i)(n)|τ (i)(1 : n − 1), r(1 : n))
.

(10)
This expression represents the calculation of the importance
weights if we only consider the samples of the received sig-
nal at the symbol rate. However, in a DS-CDMA system
we have additional information provided byNs samples for
each symbol period. Then we modify (10) taking into ac-
count the presence of a spreading sequence. Indeed, observ-
ing that the received samples are independent, the probabil-
ity densityp(r(n)|τ (i)(n)) at the symbol rate can be written

as:

p(r(n)|τ (i)(n)) =

(n+1)Ns−1
∏

m=nNs

p(r(m)|τ (i)(n)). (11)

Considering (3) at the chip rate and recalling the assump-
tions of known symbols, the probability densityp(r(m)|τ (i)(n))
is Gaussian with variance equal to the variance of the AWGN
ñ(t) in (3) and meanµ(i)

r (m) obtained by:

µ(i)
r (m) =

L
∑

l=1

hl(n)sn

m+3
∑

k=m−3

dkRg(mTc−kTc−nT−τ
(i)
l (n)).

(12)
In order to reduce the computational complexity of the PF-
TED, in (12) we have assumed that the contribution of the
raised cosine filterRg to the sum on the spreading sequence
is limited to the previous 3 and next 3 samples.

The importance weights in (10) are normalized using the
following expression:

w̃(i)(n) =
w(i)(n)

∑Np

j=1 w(j)(n)
. (13)

This algorithm presents a degeneracy phenomenon. After a
few iterations of the algorithm, only one particle has a nor-
malized weight almost equal to 1 and the other weights are
very close to zero. This problem of the SIS method can be
eliminated with a resampling of the particles. A measure of
the degeneracy is the effective sample sizeNeff , estimated
by:

N̂eff =
1

∑Np

i=1(w̃
(i)(n))2

. (14)

WhenN̂eff is below a fixed thresholdNthres, the particles
are resampled according the weight distribution [7]. After
each resampling task, the normalized weights are initialized
to 1/Np. Finally, by substitution of (8) into (7), we obtain
at each time the MMSE estimate:

τ̂(n) =

Np
∑

i=1

w̃(i)(n)τ (i)(n). (15)

4. SIMULATION RESULTS

In this section, we will compare the performance of the clas-
sical ELG-TED and the PF-TED. In order to demonstrate
the gain achieved using the latter, we will consider an in-
door scenario with a two Rayleigh path channel with the
same average power on each path and a maximum Doppler
frequency of 19 Hz corresponding to a mobile speed of 10
Km/h for a carrier frequency of 2GHz. The simulation setup
is compatible with the UMTS standard. In these conditions,
the time variations of the channel delays can be expressed
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Fig. 2. Delay tracking with the classical ELG-TED.

by the model (5), withα1 = · · · = αL = 0.99999 and
σ2

v = 10−5. We assume known symbols. A slot is com-
posed of 40 pilots equal to 1 that are expanded into a chip
level by a spreading factor of 64. The spreading sequence is
a PN sequence changing at each symbol.We have choose a
two-path channel with delay of the first path fixed to 0 and
delay of the second path decreasing linearly from2Tc to 0
over a simulation time of0.333s corresponding to 500 slots.

Fig. 2 gives a representative example of the evolution
of the two estimated delays using two ELG-TED. As soon
as the difference between the two delays is lower than 1Tc,
the detectors continues to distinguish the two paths, but it
is unable to track the two delays. On the other hand, as
shown in Fig. 3 the proposed detector can track almost per-
fectly the two paths. These results have been obtained us-
ing a particle detector with 10 particles and assuming that
Es/No = 10dB, whereEs is the energy per symbol and
No is the unilateral spectral power density.

5. CONCLUSIONS

In this paper we have proposed to use the PF methods in
order to track the delay of the different paths of a channel.
We have assumed that an acquisition phase has already pro-
vided an initial estimation of these delays. We have applied
the PF methods to solve the problem of the classical ELG-
TED when the paths are very close. We have shown that the
PF-TED can continue to track paths even when the ELG-
TED loses them. Future research fields will be the analysis
of the computational complexity of the PF-TED in the pres-
ence of unknown channel coefficients and the extension of
the PF methods to the acquisition phase in the case of unre-
solvable paths.
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Fig. 3. Delay tracking with the PF-TED.
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