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Abstract. A recursive convolutional encoder can be regarded as an in-
�nite impulse response system over the Galois Field of order 2. First, in
this paper, we introduce �nite response input sequences for recursive con-
volutional codes that give �nite weight output sequences. In practice, we
often need to describe the �nite response sequence with a certain Ham-
ming weight. Then, di�erent properties of �nite response input sequences
are presented. It is shown that all �nite response input sequences with a
certain Hamming weight can be obtained in closed-form expressions from
the so-called basic sequences. These basic sequences are presented for im-
portant recursive convolutional encoders and some possible applications
are given .

1 Introduction

Recursive convolutional codes have seldom been employed in the past because
their weight enumerating function is equivalent to that of the non recursive
convolutional codes [1]. But they have been renewed since they have been used
to construct serial and parallel concatenated convolutional codes (turbo codes)
whose performances are near Shannon limit (see [2] and [3]).

The works of Battail et al. [4] have shown that recursive convolutional codes
mimic random coding if the denominator polynomial is chosen as a primitive
polynomial. In comparison with non recursive convolutional codes, the input
sequences with �nite weight are associated with output sequences with in�nite
weight, except for a fraction of �nite weight input sequences which generate
�nite weight output sequences. These input sequences are called �nite response
input sequences (FRISs).

In [5], FRISs have been introduced ; the enumeration of FRISs for a Hamming
weight w=2 is simple but however, no practical method to enumerate these
sequences with a certain Hamming weight w greater than 2 has yet been given.

The goal of this paper is to study the properties of �nite response input
sequences with weight w and to show how these sequences can be enumerated
from one or more basic FRISs.
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In the next section, we recall some classical de�nitions of convolutional codes.
The third section we give di�erent properties of FRIS and introduce basic FRIS.
An exemple is given to show how these properties can be used to enumerate all
the FRIS in closed form. Then, the basic FRISs are presented for some important
recursive convolutional encoders. Finally, we will show how these properties can
be used to �nd the Hamming weight of the output sequence of any FRIS and to
build interleavers for turbo codes.

2 Review of Basics

In order to keep the following expositions self-contained, we shall introduce re-
cursive convolutional codes and some de�nitions to be used later in this section.

A rate 1/r recursive convolutional encoder maps the input sequence of infor-
mation bits

u0; u1; u2; : : :

into the output sequence of r-dimensional code blocks

y0;y1;y2; : : :

with

yn = (y1n; y2n; :::; yrn) :

The encoder also goes through the internal state sequence

s0; s1; s2; :::;

where each encoder state sn at time n is a M-tuple :

sn = [s1n; s2n; :::sMn] :

M is the number of delay cells of the encoder and sin is the state at time n
of the i-th delay cell.

The structure of a recursive systematic convolutional encoder of rate 1/2 is
shown in Fig.1.

A recursive encoder can also be regarded as an in�nite impulse response (IIR)
system over the �nite �eld GF(2) with input u(D) and output y(D), where D
is the unit-delay operator:

y(D) = u(D)G(D) (1)

with

G(D) =

�
P1(D)

Q(D)
;
P2(D)

Q(D)
; :::;

Pr(D)

Q(D)

�
and y(D) = (y1(D); y2(D); :::; yr(D)):
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Fig. 1. The structure of a recursive systematic convolutional encoder of rate 1/2.

where Q(D) is a primitive polynomial of degree M :

Q(D) = q0 + q1D + :::+ qMDM

and Pi(D) is a polynomial of degree at most equal to M :

Pi(D) = p0i + p1iD + :::+ pMiD
M :

When the recursive convolutional encoder is systematic, we have y1n = un
since P1(D) = Q(D).

Since Q(D) is a primitive polynomial, the encoder generates a pseudo noise
(PN) sequence or a maximum length sequence. The period of the PN sequence
is 2M � 1. The weight of the output sequence for one period of the PN sequence
is 2M�1 [6].

An example of state diagram is shown in Fig.2 for the primitive polynomial
Q(D) = 1 + D + D3. Each edge is labelled by xwIywO where wI and wO are
respectively the weight of the corresponding input and output bit. As the edge
drawn in dotted line corresponds to an input bit equal to 0, we can clearly
observe the loop corresponding to the PN sequence of period 7 and that the
output weight of the PN sequence is egal to 4.

We say that the encoder with Q(D) is IIR, since the weight-one input se-
quence (impulse input) produces an in�nite response, i.e. an in�nite weight out-
put sequence.

De�nition 1. A �nite response input sequence (FRIS) is an input sequence
whose �rst "1" causes the encoder state to leave the zero state S0 = [0; 0; :::; 0]
at time n0 and whose last "1" brings it back to S0 at time n0 + L� 1 (L > 0).

A FRIS will produce a �nite weight output sequence. These FRISs are repre-
sented by F (D).
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Fig. 2. The state diagram for a primitive polynomial Q(D) = 1 +D +D3.

3 Properties of Finite Response Input Sequences (FRIS)

We have the following theorems about F (D).

Theorem 1. A FRIS of a recursive convolutional encoder satis�es the equation:

F (D) � 0 (mod Q(D)) (mod 2) : (2)

Proof. From (1), if and only if Q(D)ju(D) (mod 2) , i. e. Q(D) is a factor of
u(D) over the �nite �eld GF(2), then yi(D) becomes a �nite order polynomial
or a �nite weight output sequence.

Since Q(D) is a primitive polynomial, the encoder generates a maximum
length sequence of period 2M�1. We then have:

D0 � D2M�1 � 1 (mod Q(D)) (mod 2) : (3)

Then, (2) becomes:

F (D) � 0 (mod Q(D)) (mod D2M�1 � 1) (mod 2) : (4)

Theorem 2. If we have a FRIS F(D) of weight w noted F (w)(D):

F (w)(D) = Dn1 +Dn2 + :::+Dnw (5)

where n1 = 0 and n2; :::; nw are any positive integer, then there exists a family
of weight w FRISs :

F (w)
m0m2:::mw

(D) = Dm0(Dn1+m1(2
M
�1) +Dn2+m2(2

M
�1) + :::+Dnw+mw(2

M
�1))
(6)

where m1 = 0 and m0;m2; :::;mw can be any integer, positive, negative, or zero.
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Proof. From (4),(5) and (6), we obtain:

F (w)
m0m2:::mw

(D) � Dm0F (w)(D) � 0 (7)

(mod Q(D)) (mod D2M�1 � 1) (mod 2) :

This theorem tells us that if we �nd any FRIS in a family, we can deduce
all the FRISs of this family. We note that there are two di�erent kinds of FRISs
called simple and complex FRISs.

De�nition 2. A FRIS is simple if its last "1" solely brings back the encoder
state to S0. Otherwise, the FRIS is complex since the encoder state returns to
S0 more than once.

We will now choose a unique representative for each family of simple FRISs,
called basic FRIS.

De�nition 3. F
(w)
0 (D) is called a basic FRIS for weight w if and only if the

following three conditions are satis�ed:

F
(w)
0 (D)is a FRIS with the form (5) (8)

0 < ni � ni�1 < 2M � 1 (8i) (9)

nw = min : (10)

Condition (8) means that the �rst "1" of a basic FRIS should occur at time 0;
condition (9) means that after rearranging n1; n2; :::nw in ascendant form, the
duration between two consecutive \1" should be less than 2M �1; condition (10)
means that we choose as the basic FRIS the sequence with the minimal length.
The basic FRISs of a recursive convolutional encoder depend only on Q(D).

We call F (w)(D) which satis�es conditions (8) and (9) a secondary basic

FRIS F
(w)
S (D).

The next theorem will show how to describe all the FRISs with weight w.

Theorem 3. Supposing w =
P

i wi(wi > 1), all the FRISs can be obtained in

the form (6) from F
(w)
0 (D) and from combinations of F

(wi)
0 (D).

In particular for w=2 and w=3, since we have no combination by w =
P

i wi

(wi > 1), each FRIS is obtained from basic FRISs according to (6).
The next theorem will give us the total number of basic FRISs for each weight

w.

Theorem 4. For w=2, there exists only one basic FRIS: 1 +D2M�1

For w=3, there exists

�
2M � 2

A3
3

�
basic FRISs: (11)
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For 4 � w < 2M � 1, there exists

�
(2M � 2)(2M � 3)w�3 �Nw

Aw
w

�
basic FRISs: (12)

Nw is the number of F (w)(D) which are constructed from secondary basic FRISs

F
(wi)
S (D) ; An

p is the number of ordered selections of p elements from a set of n
elements, and dce means c rounded to the nearest integer towards plus in�nity.

Proof. Since Q(D) is a primitive polynomial of degree M , (s1js0 = S0) = S1
when an input \1" occurs at time 0, where S1 = [1; 0; :::0]; and then, in the
absence of an input, sn goes through all possible 2M � 1 nonzero encoder states
and repeats with period 2M � 1; it returns to S0 if and only if an input \1"
occurs and the current state is S� = [0; :::; 0; 1]. So, if we exclude the �rst \1"
and the last \1" of this FRIS, the w � 2 other \1"s can occur under any state
sni jsni 6= S0; sni 6= S�; sni 6= sni�1 . Note that, for the second "1" of the FRIS,
sni�1 = s0.

Therefore, there are (2M � 2)(2M � 3)w�3 di�erent secondary basic FRISs
including those that are constructed from F (wi)(D); on the other hand, from (6)
each family includes Aw

w secondary basic FRISs if ni � ni�1 6= nj � nj�1(i 6= j)
and possibly less than Aw

w otherwise. As a result, we conclude that there exist
d((2M � 2)(2M � 3)w�3 �Nw)=A

w
we basic FRISs.

For w = 2, there is only one basic FRIS which has the �rst \1" corresponding
to the leaving of the zero state to S1 and the other \1" for the return from

s2M�1 = S� to the zero state S0, that is, F
(2)
0 (D) = 1 +D2M�1.

For w = 3, N3 = 0, then there are d(2M � 2)=A3
3e basic FRISs.

Example 1. Supposing M=3 and Q(D) = 1 +D +D3.

For w=2, since 2M � 1 = 7, F
(2)
0 (D) = 1 +D7.

All weight-2 FRISs can be written as follows according to (6) :

F
(2)
m0m2

(D) = Dm0(1 +D7m2),

For w=3, there exists d(2M �2)=A3
3e = 1 basic FRIS, F

(3)
0 (D) = 1+D+D3.

All weight-3 FRISs can be written as follows according to (6) :

F
(3)
m0m2m3

(D) = Dm0(1 +D1+7m2 +D3+7m3),
for example,

F
(3)
6;�1;�1(D) = 1 +D2 +D6,

F
(3)
4;0;�1(D) = 1 +D4 +D5.

For w=4, since 4 = 2+2, and F
(2)
0 (D) = 1+D7, we have F (4)(D) which are

combinations of secondary basic FRISs F
(2)
S (D) written by F

(4)
� (D):

F
(4)
� (D) = F

(2)
0 (D) +DliF

(2)
0 (D), li = 1; 2; :::; 6.

Clearly, here N4 = 6, d((2M � 2)(2M � 3)4�3 � N4)=A
4
4e = 1 and we have

one F
(4)
0 (D) that is, F

(4)
0 (D) = 1+D2+D3+D4 . Therefore, the following two

equations describe all simple weight-4 FRISs :
F (4)(D) = Dm0(1 +D2+7m2 +D3+7m3 +D4+7m4),
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F
(4)
� (D) = Dm0 [(1 +D7m1) +Dli(1 +D7m2)],

where m0;mi can be any integer and li = 1; 2; :::; 6.
And the following equation describe all complex weight-4 FRISs:

F
(4)
com(D) = Dm0(1 +D7m1 +D7m2 +D7m3)

where m0;mi can be any integer and mi 6= mj(i 6= j).

4 Tables

In this section, we will give a list of basic FRISs for recursive convolutional
encoders with M=2, 3, 4 and 5. The following basic FRISs have been obtained
from an exhaustive search since there is no known method to �nd them.

Table 1. Basic FRISs for M = 2 Q(D) = 1 +D +D2.

w F
(w)
0

2 1 +D3

3 1 +D +D2

4 1 +D +D3 +D4

Table 2. Basic FRISs for M = 3 Q(D) = 1 +D +D3.

w F
(w)
0

2 1 +D7

3 1 +D +D3

4 1 +D2 +D3 +D4

Table 3. Basic FRISs for M = 4 Q(D) = 1 +D +D4.

w F
(w)
0 w F

(w)
0 w F

(w)
0

2 1 +D15 4 1 +D2 +D4 +D5 4 1 +D3 +D6 +D8

3 1 +D +D4 4 1 +D5 +D6 +D7 4 1 +D3 +D4 +D9

3 1 +D2 +D8 4 1 +D +D3 +D7 4 1 +D4 +D8 +D10

3 1 +D5 +D10 4 1 +D +D5 +D8



8

Table 4. Basic FRISs for M = 5 Q(D) = 1 +D +D2 +D3 +D5.

w F
(w)
0 w F

(w)
0 w F

(w)
0

2 1 +D31 4 1 +D2 +D12 +D13 4 1 +D3 +D15 +D17

3 1 +D3 +D8 4 1 +D +D5 +D14 4 1 +D5 +D16 +D17

3 1 +D7 +D9 4 1 +D6 +D7 +D14 4 1 +D6 +D9 +D18

3 1 +D +D12 4 1 +D2 +D8 +D14 4 1 +D5 +D12 +D18

3 1 +D6 +D16 4 1 +D10 +D13 +D14 4 1 +D7 +D16 +D18

3 1 +D4 +D17 4 1 +D4 +D8 +D15 4 1 +D3 +D7 +D19

4 1 +D4 +D5 +D6 4 1 +D9 +D10 +D15 4 1 +D8 +D9 +D19

4 1 +D +D4 +D7 4 1 +D5 +D11 +D15 4 1 +D4 +D10 +D19

4 1 +D +D3 +D10 4 1 +D3 +D11 +D16 4 1 +D11 +D18 +D19

4 1 +D2 +D7 +D11 4 1 +D9 +D14 +D16 4 1 +D10 +D17 +D20

4 1 +D6 +D8 +D11 4 1 +D13 +D15 +D16 4 1 +D3 +D9 +D20

4 1 +D4 +D9 +D12 4 1 +D +D9 +D17 4 1 +D6 +D13 +D21

4 1 +D8 +D10 +D12 4 1 +D7 +D12 +D17 4 1 +D8 +D17 +D21

4 1 +D3 +D5 +D13 4 1 +D11 +D13 +D17

5 Exemples of Application

5.1 Hamming Weight of the Output Sequences of Finite Input

Response Sequences

In this section, we will show how to use the properties introduced above to
compute the Hamming weight of the output sequence of any FRIS.

Theorem 5. Consider an arbitrary FRIS of weight w F (w)(D):

F (w)(D) = Dm0(Dn1 +Dn2 + :::+Dnw);

where n1 = 0 and ni > ni�1, (8i). d[F
(w)(D)] denotes the Hamming weight of

the output sequence. We have

d[F (w)(D)] = d[F
(w)
S (D)] + d[PN ]

wX
i=2

bi (13)

where F
(w)
S (D) is the secondary basic FRIS

F
(w)
S (D) = Dl1 +Dl1+l2 + :::+D

P
i
li ; (14)

with l1 = 0

li � ni � ni�1 � 1 (mod 2M � 1) + 1

bi =

�
(ni � ni�1 � li)

2M � 1

�
:
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d[PN ] is the weight of the output sequence for one period of the PN sequence.
d[PN ] = 2M�1 since Q(D) is a primitive polynomial.

This theorem tells us that we can calculate the Hamming weight of the output
sequence of any FRIS from its associated secondary basic FRIS. We will now
give a method to �nd the Aw

w secondary basic FRISs from the basic FRIS.

Consider a basic FRIS F
(w)
0 (D)

F
(w)
0 (D) = Dn1 +Dn2 + :::+Dnw ; (15)

where n1 = 0 , ni > ni�1(8i). From this basic FRIS, we can deduce all the
simple FRIS of the family

F (w)(D) = Dm0(Dn1+m1(2
M
�1) +Dn2+m2(2

M
�1) + :::+Dnw+mw(2

M
�1)) (16)

= Dl1 +Dl2 + :::+Dlw ;

where m1 = 0 , li = m0 + ni +mi(2
M � 1)(8i) :

All the secondary basic FRISs can be obtained from the basic FRIS by permu-
tation of n1; n2; :::; nw and then searchingm0;m2; :::;mw to satisfy the inequality
l1 < l2 < ::: < lw and l1 = 0 , li � li�1 < 2M � 1.

Example 2. Supposing M=3, w=3 and Q(D) = 1 +D +D3. There is only one
basic FRIS :

F
(3)
0 (D) = D0 +D +D3 = 1 +D +D3 .

We have
F
(3)
S1 (D) = D0 +D3 +D1+7 = 1 +D3 +D8 with m0=0,m2=0, m3=1 .

F
(3)
S2 (D) = D�1(D1+D3+D0+7) = 1+D2+D6 with m0=-1,m2=0,m3=1 .

...

5.2 Interleaver Construction for Turbo Codes

Turbo codes are a parallel concatenation of recursive systematic convolutional
codes [2]. The turbo encoder consists of two recursive convolutional codes and
an interleaver of size N. An exemple of a turbo encoder is shown in Fig.3.

The N bits information sequence u(D) is encoded twice : �rstly by C1 and
secondly after interleaving by C2. A tail sequence composed of M bits is added
after the information sequence in order to bring the internal state of the �rst
encoder to the zero state. As a consequence only FRISs are allowed.

So we can use the properties of FRISs for the construction of the interleaver.
The interleaver should improve the weight distribution and the free distance of
turbo codes. An optimal interleaver should map the input sequences u(D) which
generate low weight output sequences y1(D) with sequences v(D) which generate
high weight output sequence y2(D) and vice versa.

For the construction of the interleaver, we can take into account only the
input sequences u(D) which generate low weight output sequences. These se-
quences can be enumerated using the properties of FRISs introduced above. The
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Fig. 3. The structure of a turbo encoder of rate 1/3.

weight of the associated output sequence y1(D) is calculated by using (13). The
weight of the output sequence y2(D) can also be obtained using a generalisation
of this principle.

In [7], we have shown that these properties combined with a tree research
method for construction of the interleaver can produce very good interleavers.

6 Conclusion

The �nite response input sequences (FRISs) for a recursive convolutional encoder
with a primitive polynomial can be de�ned by (4). In this paper, new practical
properties of FRISs with a certain Hamming weight w are presented. We have
introduced the basic FRIS and shown that we could write all FRISs with weight
w in closed-form expressions from these basic FRISs.

These properties can be employed in many applications, such as the com-
puting of the weight enumerators of these codes and the construction of e�cient
interleavers for turbo codes.
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